Department of Higher Education
 University of Computer Studies, Yangon
 Second Year(B.C.Sc./B.C.Tech.)
 Final Examination
 Mathematics of Computing II (CST-202)
 September, 2018

Answer ALL Questions.

Time allowed: $\mathbf{3}$ hours
1(a) (i) Find the Laplace transform of $\frac{1}{3}\left(e^{t}-1\right)^{3} e^{-5 t}$.
(ii) Find the inverse transform of $\left(s e^{-\pi s / 2}+e^{-\pi s}\right) /\left(s^{2}+1\right)$.
(b) Solve $y^{\prime \prime}-4 y^{\prime}+4 y=0, y(0)=8.1, y^{\prime}(0)=3.9$ using the Laplace transform.
(c) Using the Laplace transform and showing the details, solve

$$
\begin{equation*}
y^{\prime \prime}+9 y=8 \sin t \text { if } 0<t<\pi \text { and } 0 \text { if } t>\pi ; y(0)=0, y^{\prime}(0)=4 \tag{25marks}
\end{equation*}
$$

2(a) Does the sequence $\left\{a_{n}\right\}$ converge or diverge, where $a_{n}=\frac{8^{n}}{n!}$? If it converges, find the limit.
(b) Determine whether the following series converge or diverge.
(i) $\sum_{n=1}^{\infty} \frac{8}{\left(3+\left(\frac{1}{n}\right)\right)^{2 n}}$ (Use Root test)
(ii) $\sum_{n=1}^{\infty} \frac{2^{n+1}}{n 3^{n-1}}$ (Use Ratio test)
(c) Write out the first five terms of the series, $\sum_{n=1}^{\infty}(-1)^{n} \frac{\sqrt{n}+1}{n+1}$. Then find the sum of the series.

3(a) (i) Find the series' radius and interval of convergence of the series $\sum_{n=0}^{\infty} \frac{(x-2)^{n}}{12^{n}}$. For what values of x does the series converge absolutely?
(ii) Find the Taylor series and the Taylor polynomials generated by $f(x)=1 / x$, at $a=2$.
(b) (i) Find the length of the curve, $x=\frac{(2 t+3)^{3 / 2}}{3}, y=t+\frac{t^{2}}{2}, 0 \leq t \leq 3$.
(ii) Find the Cartesian equation with a polar equation for $4 r^{2} \cos ^{2} \theta+9 r^{2} \sin ^{2} \theta=36$. Then identify the graph.
(20 marks)
4(a) Find the area of the region that lies inside the circle $r=1$ and outside the cardioid $r=1-\cos \theta$.
(b) Show that the equation $2 x^{2}+3 y^{2}-8 x-18 y+29=0$ represents an Ellipse. Find its center, foci, vertices and eccentricity.
(c) Find the hyperbola's standard form equation in Cartesian Coordinates:

Foci: $(0, \pm \sqrt{10})$, Eccentricity $: \sqrt{5}$, Directrices: $y= \pm \frac{2}{\sqrt{10}}$.
(20 marks)

5(a) Find the angle θ in the triangle ABC determined by the vertices $\mathrm{A}=(0,0), \mathrm{B}=(3,5)$, and $C=(5,2)$ shown in the figure.

(b) Find $v . u,|v|,|u|$, the cosine of the angle between v and u, the scalar component of u in the direction of v, the vector $\operatorname{proj}_{v} u$. the length and direction (when defined) of $u \mathbf{x} v$ and $v \mathbf{x} u$..

$$
v=9 i-2 j+6 k, u=2 i+2 j+k
$$

(c) Find the area of the triangle with vertices $\mathrm{P}(3,-1,1), \mathrm{Q}(2,2,-1)$, and $\mathrm{R}(-1,2,3)$.

